

LAST TIME: VISUAL EXPLAINERS

4

SUMMARY

Narrative visualizations blend communication via **imagery and text** with interaction techniques

Specific strategies can be identified by studying what expert designers make

Tools to facilitate construction of effective explainers is an active area of Visualization research

ANNOUNCEMENTS

10

FINAL PROJECT

Proposal due 11/6 11:30am

Data analysis/explainer

Analyze dataset in depth & make a visual explainer

Deliverables

An article with multiple different interactive visualizations Short video (2 min) demoing and explaining the project

Schedule

Project proposal: Mon 11/6

Design Review and Feedback: 9th week of quarter Final code and video: Sun 12/10 8pm

Gradino

Groups of up to 3 people, graded individually Clearly report responsibilities of each member

PURPOSE OF COLOR

To label

To measure

To represent and imitate

To enliven and decorate

"Above all, do no harm."

- Edward Tufte

12

Learning Objectives

TODAY

1. Understand how people perceive color

2. Apply understanding of color perception to visualization design

EFFECTS OF RETINAL ENCODING

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers")

Tri-stimulus response

Computer displays Digital scanners Digital cameras

OPPONENT PROCESSING

LMS responses linearly combined to form:
Lightness

Red-green contrast Yellow-blue contrast

47

OPPONENT PROCESSING

LMS responses linearly combined to form:

Lightness

Red-green contrast

Yellow-blue contrast

Expriments:

No reddish green color seen

No bluish-yellow color seen

Color after images

11/1/23

MUNSELL ATLAS Developed a perceptual color system based on his experience as an artist (1905) Courtesy Gretag-Macbeth

If we have a perceptually-uniform color space, can we predict how we perceive colors?

"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, Interaction of Color

72

BASIC COLOR TERMS

Chance discovery by Brent Berlin and Paul Kay

90

BASIC COLOR TERMS

Chance discovery by Brent Berlin and Paul Kay

Initial study in 1969 Surveyed speakers from 20 languages Literature from 69 languages

9:

USING COLOR IN VISUALIZATION

106

COLORMAP DESIGN CONSIDERATIONS

- 1. Perceptually distinguishable colors
- 2. Value distance matches perceptual distance
- 3. Colors and concepts properly align
- 4. Aesthetically pleasing, intriguing
- 5. Respect color vision deficiencies
- 6. Should survive printing to black & white
- 7. Don't overwhelm people's capability!

- 1. Hues are not naturally ordered
- 2. People segment colors into classes, perceptual banding
- 3. Naïve rainbows unfriendly to color blind viewers
- 4. Low luminance colors (blue) hide high frequencies

BUT, RAINBOWS HELP WITH INFERENCE?

Reda et al. 2021: Color Nameability Predicts Inference Accuracy in Spatial Visualizations

Rainbows found **ineffective** for *value comparison* [Liu 2018]

... but color name salience found to **improve performance** on *task* of distinguishing distributions [Reda 2021]

Task matters!

DISCRETIZED CONTINUOUS COLOR

146

CLASSING CONTINUOUS/QUANT. DATA

- 1. Equal interval (arithmetic progression)
- 2. Quantiles (recommended)
- 3. Standard deviations
- 4. Clustering (Jenks' natural breaks / 1D K-Means)

Minimize within group variance Maximize between group variance

150

DISCRETE CONTINUOUS COLOR ENCODING

Sequential color scale

Ramp in luminance, possibly also hue
Typically higher values map to darker colors

Diverging color scale

Useful when data has a meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9 (why?)

SUMMARY

Color perception

Better acuity for luminance than for hue Beware of simultaneous contrast, crispening, spreading

Color naming

Use colors that are easily distinguished by name

Color palettes

Use small number of hues (about 6)
Avoid rainbow palette except in special cases
Steal well designed palettes (e.g. ColorBrewer)
Consider sequential and diverging scales for Quantitative data