

LAST TIME: VISUAL EXPLAINERS

4

Genres for Narrative Visualization [Segel \& Heer 2010]

8

SUMMARY

Narrative visualizations blend communication via imagery and text with interaction techniques

Specific strategies can be identified by studying what expert designers make

Tools to facilitate construction of effective explainers is an active area of Visualization research

10

FINAL PROJECT

Proposal due 11/6 11:30am
Data analysis/explainer
Analyze dataset in depth \& make a visual explainer
Deliverables
An article with multiple different interactive visualizations
Short video (2 min) demoing and explaining the project

Schedule

Project proposal: Mon 11/6
Design Review and Feedback: $9^{\text {th }}$ week of quarter
Final code and video: Sun 12/10 8pm

Grading

Groups of up to 3 people, graded individually
Clearly report responsibilities of each member

PURPOSE OF COLOR

To label
To measure
To represent and imitate
To enliven and decorate
"Above all, do no harm."

- Edward Tufte

Millifllil intifillifitid

12

WHAT COLOR IS THIS?

> "Teal" ?

PHYSICIST'S VIEW

Light as electromagnetic wave

Energy or "Relative power" across visible spectrum of wavelengths

30

31

AS LIGHT ENTERS OUR RETINA

LMS (Long, Middle, Short) Cones Sensitive to different wavelength

CONE RESPONSE

LMS (Long, Middle, Short) Cones Sensitive to different wavelength Integration with input stimulus

35

EFFECTS OF RETINAL ENCODING

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers")

Tri-stimulus response

Computer displays
Digital scanners
Digital cameras

COLOR VISION DEFICIENCY
Missing cones

normal vision		

red weak protanomaly
green blind deuteranopia

42

43

COLOR VISION SIMULATORS

Simulates color vision deficiencies Browser plugins
Photoshop plugins, etc.

Deuteranope

44

45

OPPONENT PROCESSING

LMS responses linearly combined to form: Lightness
Red-green contrast
Yellow-blue contrast

47

OPPONENT PROCESSING

LMS responses linearly combined to form:
Lightness
Red-green contrast
Yellow-blue contrast

Expriments:
No reddish green color seen
No bluish-yellow color seen
Color after images

MUNSELL ATLAS

Developed a perceptual color system based on his experience as an artist (1905)

HUE, VALUE, CHROMA

58

HUE, VALUE, CHROMA

59

HUE, VALUE, CHROMA

HUE, VALUE, CHROMA

61

PERCEPTUAL BRIGHTNESS

63

PERCEPTUAL BRIGHTNESS

Color palette

Luminance \mathbf{Y} (CIE XYZ)

64

PERCEPTUAL BRIGHTNESS

65

If we have a perceptually-uniform color space, can we predict how we perceive colors?
"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, Interaction of Color

72

SIMULTANEOUS CONTRAST

SIMULTANEOUS CONTRAST

SIMULTANEOUS CONTRAST

Inner and outer thin rings are same purple

BEZOLD EFFECT

Color appearance depends on adjacent colors

85

CRISPENING

Perceived difference depends on background

SPREADING

Adjacent colors blend

Spatial frequency The paint chip problem Small text, lines, glyphs Image colors

87

88

BASIC COLOR TERMS

Chance discovery by Brent Berlin and Paul Kay

90

BASIC COLOR TERMS

Chance discovery by Brent Berlin and Paul Kay

Initial study in 1969
Surveyed speakers from 20 languages
Literature from 69 languages

91

WORLD COLOR SURVEY

92

WORLD COLOR SURVEY

93

WORLD COLOR SURVEY

94

RESULTS FROM WCS (SOUTH PACIFIC)

95

RESULTS FROM WCS (MEXICO)

96

UNIVERSAL (?) BASIC COLOR TERMS

Basic color terms recur across languages

97

EVOLUTION OF BASIC COLOR TERMS

98

NAMING AFFECTS COLOR PERCEPTION

Color name boundaries

COLORS ACCORDING TO XKCD

```
Color names if
Color names if
you're a guy...
```



```
Doghouse Diaries,
We taie no so s n nonsere:
```

Actual color names Actual color names if you're a girl ... if you're a guy

104

COLORS NAMING MODELS ${ }_{\text {[Heer 2012] }}$

Model 3 million responses from XKCD survey
Bins in LAB space sized by saliency. How much do people agree on color name?

Modeled by entropy of p(name | color)

USING COLOR IN VISUALIZATION

106

COLORMAP DESIGN CONSIDERATIONS

1. Perceptually distinguishable colors
2. Value distance matches perceptual distance
3. Colors and concepts properly align
4. Aesthetically pleasing, intriguing
5. Respect color vision deficiencies
6. Should survive printing to black \& white
7. Don't overwhelm people's capability!

GRAY'S ANATOMY

110

111

112

113

PALLETTE DESIGN \& COLOR NAMES

Minimize overlap and ambiguity of color names

Color Name Distance										Salience	Name blue 62.9\%
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	. 47	
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	. 90	
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	. 67	green 79.8\%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	. 66	red 80.4\%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	. 47	purple 51.4\%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	. 37	brown 54.0\%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	. 58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	. 67	grey 79.4\%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	. 18	yellow 31.2\%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	. 25	blue 25.4\%
Tableau-10								verage	0.97	. 52	

119

PALLETTE DESIGN \& COLOR NAMES

Minimize overlap and ambiguity of color names

Color Name Distance										Salience	Name
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	. 30	blue 50.5\%
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	. 21	red 27.8\%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	. 34	green 36.8%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	. 55	purple 67.3\%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	. 20	blue 36.6\%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	. 39	orange 51.9\%
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	. 13	blue 15.7\%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	. 16	pink 29.4\%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	. 12	green 21.7%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	. 30	purple 23.9\%
Excel								verage	0.87	. 27	

http://vis.stanford.edu/color-names

135

BE WARY OF NAÏVE RAINBOWS?

1. Hues are not naturally ordered
2. People segment colors into classes, perceptual banding
3. Naïve rainbows unfriendly to color blind viewers
4. Low luminance colors (blue) hide high frequencies

137

BUT, RAINBOWS HELP WITH INFERENCE?

Reda et al. 2021: Color Nameability Predicts Inference Accuracy in Spatial Visualizations
Rainbows found ineffective for value comparison [Liu 2018]
but color name salience found to improve performance on task of distinguishing distributions [Reda 2021]

Task matters!

147

CLASSING CONTINUOUS/QUANT. DATA

Age-adjusted	
(U.S. rate $=205.0$)	
Rete per 100,000 population	Comparative mortality ratio (HSA to U.S.)
253.8-328.6	1.24-1.60
236.8-253.7	1.16-1.24
215.2-236.7	1.05-1.16
199.9-215.1	0.98-1.05
179.5-199.8	0.88-0.98
166.7-179.4	0.81-0.88
112.4-166.6	0.55-0.81

Age-adjusted mortality rates for the United States
Common option: break into 5 to 7 quantiles

CLASSING CONTINUOUS/QUANT. DATA

1. Equal interval (arithmetic progression)
2. Quantiles (recommended)
3. Standard deviations
4. Clustering (Jenks' natural breaks / 1D K-Means)

Minimize within group variance
Maximize between group variance

150

DISCRETE CONTINUOUS COLOR ENCODING

Sequential color scale

Ramp in luminance, possibly also hue
Typically higher values map to darker colors

Diverging color scale

Useful when data has a meaningful "midpoint"
Use neutral color (e.g., grey) for midpoint
Use saturated colors for endpoints

Limit number of steps in color to 3-9 (why?)

SUMMARY

Color perception

Better acuity for luminance than for hue
Beware of simultaneous contrast, crispening, spreading

Color naming

Use colors that are easily distinguished by name

Color palettes

Use small number of hues (about 6)
Avoid rainbow palette except in special cases
Steal well designed palettes (e.g. ColorBrewer)
Consider sequential and diverging scales for Quantitative data

